skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Scott, R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 4, 2026
  2. Free, publicly-accessible full text available March 31, 2026
  3. Abstract Intra‐articular injections of hyaluronic acid (HA) are the cornerstone of osteoarthritis (OA) treatments. However, the mechanism of action and efficacy of HA viscosupplementation are debated. As such, there has been recent interest in developing synthetic viscosupplements. Recently, a synthetic 4 wt% polyacrylamide (pAAm) hydrogel was shown to effectively lubricate and bind to the surface of cartilage in vitro. However, its ability to localize to cartilage and alter the tribological properties of the tissue in a live articulating large animal joint is not known. The goal of this study was to quantify the distribution and extent of localization of pAAm in the equine metacarpophalangeal or metatarsophalangeal joint (fetlock joint), and determine whether preferential localization of pAAm influences the tribological properties of the tissue. An established planar fluorescence imaging technique was used to visualize and quantify the distribution of fluorescently labeled pAAm within the joint. While the pAAm hydrogel was present on all surfaces, it was not uniformly distributed, with more material present near the site of the injection. The lubricating ability of the cartilage in the joint was then assessed using a custom tribometer across two orders of magnitude of sliding speed in healthy synovial fluid. Cartilage regions with a greater coverage of pAAm, that is, higher fluorescent intensities, exhibited friction coefficients nearly 2‐fold lower than regions with lesser pAAm (Rrm = −0.59,p < 0.001). Collectively, the findings from this study indicate that intra‐articular viscosupplement injections are not evenly distributed inside a joint, and the tribological outcomes of these materials is strongly determined by the ability of the material to localize to the articulating surfaces in the joint. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  4. Free, publicly-accessible full text available December 1, 2025
  5. This paper develops a machine learning methodology for the rapid and robust prediction of the glass transition temperature (Tg) for polymers for the targeted application of sustainable high-temperature polymers. The machine learning framework combines multiple techniques to develop a feature set encompassing all relative aspects of polymer chemistry, to extract and explain correlations between features and Tg, and to develop and apply a high-throughput predictive model. In this work, we identify aspects of the chemistry that most impact Tg, including a parameter related to rotational degrees of freedom and a backbone index based on a steric hindrance parameter. Building on this scientific understanding, models are developed on different types of data to ensure robustness, and experimental validation is obtained through the testing of new polymer chemistry with remarkable Tg. The ability of our model to predict Tg shows that the relevant information is contained within the topological descriptors, while the requirement of non-linear manifold transformation of the data also shows that the relationships are complex and cannot be captured through traditional regression approaches. Building on the scientific understanding obtained from the correlation analyses, coupled with the model performance, it is shown that the rigidity and interaction dynamics of the polymer structure are key to tuning for achieving targeted performance. This work has implications for future rapid optimization of chemistries 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  6. This manuscript describes a simple and effective method to cyclodehydrogenate arenes using liquid alkali metals. Direct reaction between molten potassium and arenes forms 6-membered rings and zigzag edged structures within polyarenes. The approach is extended to integration of pyridinic nitrogen and 5-membered rings to arene structures and synthesis of larger, open-shell nanographenes. 
    more » « less
    Free, publicly-accessible full text available January 8, 2026
  7. Temperature control is crucial for live cell imaging, particularly in studies involving plant responses to high ambient temperatures and thermal stress. This study presents the design, development, and testing of two cost-effective heating devices tailored for confocal microscopy applications: an aluminum heat plate and a wireless mini-heater. The aluminum heat plate, engineered to integrate seamlessly with the standard 160 mm × 110 mm microscope stage, supports temperatures up to 36°C, suitable for studies in the range of non-stressful warm temperatures (e.g., 25-27°C forArabidopsis thaliana) and moderate heat stress (e.g., 30-36°C forA. thaliana). We also developed a wireless mini-heater that offers rapid, precise heating directly at the sample slide, with a temperature increase rate over 30 times faster than the heat plate. The wireless heater effectively maintained target temperatures up to 50°C, ideal for investigating severe heat stress and heat shock responses in plants. Both devices performed well in controlled studies, including the real-time analysis of heat shock protein accumulation and stress granule formation inA. thaliana. Our designs are effective and affordable, with total construction costs lower than $300. This accessibility makes them particularly valuable for small laboratories with limited funding. Future improvements could include enhanced heat uniformity, humidity control to mitigate evaporation, and more robust thermal management to minimize focus drift during extended imaging sessions. These modifications would further solidify the utility of our heating devices in live cell imaging, offering researchers reliable, budget-friendly tools for exploring plant thermal biology. 
    more » « less
    Free, publicly-accessible full text available January 10, 2026
  8. Abstract The Channeled Scabland of eastern Washington (USA) was formed by outburst floods from glacial Lake Missoula. Despite chronological advances, the timing of erosion in the main flood channels is unresolved. In particular, it is still uncertain whether upper Grand Coulee, the largest canyon in the Channeled Scabland, was incised during or prior to the last glaciation. We report 10Be exposure ages from erratics in upper Grand Coulee, glacial Lake Columbia, and surrounding flood routes. Flood-transported boulders on the high-elevation east rim of Grand Coulee date to ca. 17–15 ka. Ages from boulders on the floor of Grand Coulee indicate later flooding at ca. 14 ka, which post-dated canyon incision and occurred after inundation of the Telford-Crab Creek scabland at ca. 15–14.5 ka. Prior hydraulic modeling and dating suggest the entrance to Grand Coulee was blocked by rock and that canyon incision was incomplete at ca. 17 ka; hence, we interpret the 17–15 ka exposure ages on the east rim to coincide with flow over a retreating cataract during canyon incision. Our results indicate incision of Grand Coulee was completed between 17 ka and 14 ka. The short duration of canyon incision suggests that glacial Lake Missoula generated some of the most erosive outburst floods in Earth's history. 
    more » « less
  9. Abstract The dynamics of methane (CH4) cycling in high-latitude peatlands through different pathways of methanogenesis and methanotrophy are still poorly understood due to the spatiotemporal complexity of microbial activities and biogeochemical processes. Additionally, long-termin situmeasurements within soil columns are limited and associated with large uncertainties in microbial substrates (e.g. dissolved organic carbon, acetate, hydrogen). To better understand CH4cycling dynamics, we first applied an advanced biogeochemical model,ecosys, to explicitly simulate methanogenesis, methanotrophy, and CH4transport in a high-latitude fen (within the Stordalen Mire, northern Sweden). Next, to explore the vertical heterogeneity in CH4cycling, we applied the PCMCI/PCMCI+ causal detection framework with a bootstrap aggregation method to the modeling results, characterizing causal relationships among regulating factors (e.g. temperature, microbial biomass, soil substrate concentrations) through acetoclastic methanogenesis, hydrogenotrophic methanogenesis, and methanotrophy, across three depth intervals (0–10 cm, 10–20 cm, 20–30 cm). Our results indicate that temperature, microbial biomass, and methanogenesis and methanotrophy substrates exhibit significant vertical variations within the soil column. Soil temperature demonstrates strong causal relationships with both biomass and substrate concentrations at the shallower depth (0–10 cm), while these causal relationships decrease significantly at the deeper depth within the two methanogenesis pathways. In contrast, soil substrate concentrations show significantly greater causal relationships with depth, suggesting the substantial influence of substrates on CH4cycling. CH4production is found to peak in August, while CH4oxidation peaks predominantly in October, showing a lag response between production and oxidation. Overall, this research provides important insights into the causal mechanisms modulating CH4cycling across different depths, which will improve carbon cycling predictions, and guide the future field measurement strategies. 
    more » « less
    Free, publicly-accessible full text available February 11, 2026
  10. Abstract Pleistocene outburst floods from the drainage of glacial Lake Missoula carved bedrock canyons into the Columbia Plateau in eastern Washington, USA, forming the Channeled Scabland. However, rates of bedrock incision by outburst floods are largely unconstrained, which hinders the ability to link flood hydrology with landscape evolution in the Channeled Scabland and other flood-carved landscapes. We used long profiles of hanging tributaries to reconstruct the pre-flood topography of the two largest Channeled Scabland canyons, upper Grand Coulee and Moses Coulee, and a smaller flood-eroded channel, Wilson Creek. The topographic reconstruction indicates floods eroded 67.8 km3, 14.5 km3, and 1.6 km3 of rock from upper Grand Coulee, Moses Coulee, and Wilson Creek, respectively, which corresponds to an average incision depth of 169 m, 56 m, and 10 m in each flood route. We simulated flood discharge over the reconstructed, pre-flood topography and found that high-water evidence was emplaced in each of these channels by flow discharges of 3.1 × 106 m3 s−1, 0.65–0.9 × 106 m3 s−1, and 0.65–0.9 × 106 m3 s−1, respectively. These discharges are a fraction of those predicted under the assumption that post-flood topography was filled to high-water marks for Grand and Moses Coulees. However, both methods yield similar results for Wilson Creek, where there was less erosion. Sediment transport rates based on these discharges imply that the largest canyons could have formed in only about six or fewer floods, based on the time required to transport the eroded rock from each canyon, with associated rates of knickpoint propagation on the order of several km per day. Overall, our results indicate that a small number of outburst floods, with discharges much lower than commonly assumed, can cause extensive erosion and canyon formation in fractured bedrock. 
    more » « less